Activity-dependent regulation of T-type calcium channels by submembrane calcium ions
نویسندگان
چکیده
منابع مشابه
Activity-dependent regulation of T-type calcium channels by submembrane calcium ions
Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intra...
متن کاملGene regulation by voltage-dependent calcium channels.
Ca2+ is the most widely used second messenger in cell biology and fulfills a plethora of essential cell functions. One of the most exciting findings of the last decades was the involvement of Ca2+ in the regulation of long-term cell adaptation through its ability to control gene expression. This finding provided a link between cell excitation and gene expression. In this review, we chose to foc...
متن کاملModulation of L-type calcium channels by sodium ions.
It is universally believed that the removal of external sodium ions is without effect on calcium current. We now report that in enzymatically isolated guinea pig ventricular cells, the replacement of external sodium ions with certain other cations causes a 3- to 6-fold increase in peak L-type calcium current. The increase in current is reversibly blocked by L-type calcium-channel antagonists, n...
متن کاملHow do calcium channels transport calcium ions?
Calcium channel activity is crucial for many fundamental physiological processes ranging from the heart beat to synaptic transmission. The channel-forming protein, of about 2000 amino acids, comprises four domains internally homologous to each other. Voltage-dependent Ca2+ channels are the most selective ion channels known. Under physiological conditions, they prefer Ca2+ over Na+ by a ratio of...
متن کاملVerapamil block of T-type calcium channels.
Verapamil is a prototypical phenylalkylamine (PAA), and it was the first calcium channel blocker to be used clinically. It tonically blocks L-type channels in the inner pore with micromolar affinity, and its affinity increases at depolarized membrane potentials. In T-type calcium channels, verapamil blocks with micromolar affinity and has modestly increased affinity at depolarized potentials. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: eLife
سال: 2017
ISSN: 2050-084X
DOI: 10.7554/elife.22331